Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 251: 312-327, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31091495

RESUMO

In China, the huge amounts of energy consumption caused severe carcinogenic polycyclic aromatic hydrocarbon (PAHs) concentration in the soil and ambient air. This paper summarized that the references published in 2008-2018 and suggested that biomass, coal and vehicular emissions were categorized as major sources of PAHs in China. In 2016, the emitted PAHs in China due to the incomplete combustion of fuel was about 32720 tonnes, and the contribution of the emission sources was the sequence: biomass combustion > residential coal combustion > vehicle > coke production > refine oil > power plant > natural gas combustion. The total amount of PAHs emission in China at 2016 was significantly decreased due to the decrease of the proportion of crop resides burning (indoor and open burning). The geographical distribution of PAHs concentration demonstrated that PAHs concentration in the urban soil is 0.092-4.733 µg/g. At 2008-2012, the serious PAHs concentration in the urban soil occurred in the eastern China, which was shifted to western China after 2012. The concentration of particulate and gaseous PAHs in China is 1-151 ng/m3 and 1.08-217 ng/m3, respectively. The concentration of particle-bound PAHs in the southwest and eastern region are lower than that in north and central region of China. The incremental lifetime cancer risk (ILCR) analysis demonstrates that ILCR in the soil and ambient air in China is below the acceptable cancer risk level of 10-6 recommended by US Environmental Protection Agency (EPA), which mean that there is a low potential PAHs carcinogenic risk for the soil and ambient air in China.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Hidrocarbonetos Policíclicos Aromáticos/análise , Emissões de Veículos/análise , China , Carvão Mineral/análise , Gasolina/análise , Medição de Risco , Madeira/química
2.
Chemosphere ; 212: 200-208, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30144681

RESUMO

In this paper, porous alumina was used as an alternative bed material to reduce polycyclic aromatic hydrocarbon (PAH) and monocyclic aromatic hydrocarbons (MAH) emission during medical waste incineration in a fluidized bed combustor (FBC). In order to understand the reduction mechanisms of MAH and PAH, porous alumina, nonporous alumina, and silica sand (180-250 µm and 250-320 µm) were used as the bed materials. In comparison to the silica sand (180-250 µm) bed material, the reduction efficiencies of ∑MAH, ∑PAH and ∑PAH toxic equivalent (TEQ) by porous alumina bed material were in sequence as 91.57%, 58.90% and 73.23% during medical waste incineration under 800 °C. There were three mechanisms for the reduction of PAH under porous alumina bed materials. Firstly, the evolution rate of hydrocarbon was reduced by porous alumina due to its low heat transfer coefficient. Secondly, porous alumina bed materials could absorb more gaseous hydrocarbon and prolong the residence time of hydrocarbon in the diluted zone of FBC due to its higher BET. Lastly, the oxidization of the gaseous hydrocarbon was accelerated by porous alumina due to its catalytic effect. Thus, less light hydrocarbon, MAH and PAH were formed during medical waste incineration. The experimental results also indicated that the heat transmission, catalytic effect, and adsorption effect of porous alumina bed materials respectively accounted for 22.8%, 29.2% and 20.9% of the ∑PAH reduction.


Assuntos
Óxido de Alumínio/química , Incineração , Resíduos de Serviços de Saúde/análise , Hidrocarbonetos Policíclicos Aromáticos/química , Dióxido de Silício/química
3.
Waste Manag Res ; 36(11): 1073-1082, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30091678

RESUMO

In order to obtain the kinetic parameters during typical medical waste pyrolysis, the typical medical waste is pyrolysed in a micro-fluidised bed reactor. The gases evolved from the typical medical waste pyrolysis are analysed by a mass spectrometer, and only H2, CH4, C2H2, C2H4, C2H6, C3H6, C3H8 and C4H4 are observed. According to the gaseous product concentration profiles, the activation energies of gaseous formation are calculated based on the Friedman approach, and the average activation energies of H2, CH4, C2H2, C2H4, C2H6, C3H6, C3H8 and C4H4 formation during typical medical waste pyrolysis are in sequence as 65.10, 39.98, 35.17, 38.71, 40.75, 41.79, 58.57 and 63.95 kJ mol-1. Moreover, the activation energy with respect to the gases mixture formation is 52.70 kJ mol-1. Hence, it is concluded that the activation energy of typical medical waste pyrolysis is 52.70 kJ mol-1. The model-fitting method is used to determine the mechanism model of medical waste pyrolysis. The results indicate that the chemical reaction ( n = 1) model (G(x) = -ln(1-x)) is the optimum.


Assuntos
Gases , Resíduos de Serviços de Saúde , Cinética , Espectrometria de Massas , Pirólise
4.
J Air Waste Manag Assoc ; 68(10): 1038-1050, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29676965

RESUMO

In atmospheric environment, the layout difference of urban buildings has a powerful influence on accelerating or inhibiting the dispersion of particle matters (PM). In industrial cities, buildings of variable heights can obstruct the diffusion of PM from industrial stacks. In this study, PM dispersed within building groups was simulated by Reynolds-averaged Navier-Stokes equations coupled Lagrangian approach. Four typical street building arrangements were used: (a) a low-rise building block with Height/base H/b = 1 (b = 20 m); (b) step-up building layout (H/b = 1, 2, 3, 4); (c) step-down building layout (H/b = 4, 3, 2, 1); (d) high-rise building block (H/b = 5). Profiles of stream functions and turbulence intensity were used to examine the effect of various building layouts on atmospheric airflow. Here, concepts of particle suspension fraction and concentration distribution were used to evaluate the effect of wind speed on fine particle transport. These parameters showed that step-up building layouts accelerated top airflow and diffused more particles into street canyons, likely having adverse effects on resident health. In renewal old industry areas, the step-down building arrangement which can hinder PM dispersion from high-level stacks should be constructed preferentially. High turbulent intensity results in formation of a strong vortex that hinders particles into the street canyons. It is found that an increase in wind speed enhanced particle transport and reduced local particle concentrations, however, it did not affect the relative location of high particle concentration zones, which are related to building height and layout. IMPLICATIONS: This study has demonstrated the height variation and layout of urban architecture affect the local concentration distribution of particulate matter (PM) in the atmosphere and for the first time that wind velocity has particular effects on PM transport in various building groups. The findings may have general implications in optimization the building layout based on particle transport characteristics during the renewal of industrial cities. For city planners, the results and conclusions are useful for improving the local air quality. The study method also can be used to calculate the explosion risk of industrial dust for people who live in industrial cities.


Assuntos
Arquitetura , Atmosfera/análise , Monitoramento Ambiental/métodos , Material Particulado , Vento , Poluição do Ar , Arquitetura/métodos , Arquitetura/normas , China/epidemiologia , Cidades/epidemiologia , Humanos , Modelos Teóricos , Tamanho da Partícula , Material Particulado/efeitos adversos , Material Particulado/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...